

Current Sensor

Model Number:

FR7V 0.005 H00 FR7V 0.01 H00

For the electronic measurement of DC leakage current, with galvanic separation between the primary and the secondary circuit.

Features

- Current sensor based on fluxgate technology
- \diamondsuit Output voltage
- \diamond Insulating plastic case recognized according to UL 94-V0 (Blue)
- ♦ High linearity
- Very low zero temperature drift
- Standards:

EN50178: 1997 IEC 61010-1: 2000 UL 508: 2010

Applications

- Residual current measurement
- Photovoltaic inverter (no transformer type) leakage current measurement
- Leakage protection of photovoltaic arrays
- Detects leakage of stacked DC power supplies
- Failure mode detection of current sources
- Symmetrical fault detection (e.g. at inverter output)

Safety

The sensor must be used according to IEC61010-1.

The sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

11/19/2024

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	Vc	V	±18
Primary conductor temperature	<i>T</i> _B	$^{\circ}$	100

Stresses above these ratings may cause permanent damage.

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T _A	$^{\circ}$	-10		70	
Ambient storage temperature	<i>T</i> _S	$^{\circ}\!\mathbb{C}$	-40		85	
Mass	m	g		28		
Standards	EN 50178, IEC 61010-1, UL 508C					

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test @50Hz,1min	$V_{ m d}$	kV	3	
Clearance(Prisec.)	d _{C1}	mm	7.2	
Creepage distance(Prisec.)	d Cp	mm	7.2	
Plastic case	-	-	UL94-V0	
Comparative traking index	СТІ	PLC	3	
Application example	-	-	300V CAT III PD2	Reinforced insulation,according to EN 50178, EN 61010-1
Application example	-	-	600V CAT III PD3	Basic insulation,according to EN 50178, EN 61010-1

X Exposure to absolute maximum ratings for extended periods may degrade reliability.

Electrical data

FR7V 0.005 H00

% With $T_{\rm A}$ = 25 °C, $V_{\rm C}$ = ±15V,Unless otherwise noted, Output voltage reference $R_{\rm L}$ =10k Ω_{\circ}

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal residual current effective value	/ PN	mA		±5		
Primary residual current measuring range	/ РМ	mA	-7		7	
Supply voltage	Vc	٧		±15		@5%
Current consumption	<i>l</i> c	mA			20	@ / _{PN} =0A
Nominal output voltage	V о∪т	٧		±5		
Measuring resistance	R∟	kΩ	10			
Theoretical sensitivity	G_{th}	V/A		1000		
Temperature drift of sensitivity error	TCG	mV/k		±1.5		@-10℃~70℃
Zero voltage	V₀E	mV	-50	±20	50	
Temperature drift of zero voltage@/ _P = 0	<i>TCV</i> _{0E}	mV/k		±1.5		@-10℃~70℃
Linearity error 0I _{PN}	\mathcal{E}_{L}	%	-1	±0.5	1	
Accuracy@ / _{PN}	Χ	%	-1	±0.5	1	
Response time@ 90% of I _{PN}	t r	ms		500		
Frequency bandwidth	BW	kHz		DC		

Electrical data

FR7V 0.01 H00

% With T_A = 25°C, V_C = ±12V,unless otherwise noted, Output voltage reference R_L =10k Ω .

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal residual current effective value	/ PN	mA		±10		
Primary residual current measuring range	/ PM	mA	-17		17	
Supply voltage	V c	٧		±15		@5%
Current consumption	/c	mA			20	@ / _{PN} =0A
Nominal output voltage	V о∪т	٧		±5		
Measuring resistance	R∟	kΩ	10			
Theoretical sensitivity	G_{th}	V/A		1000		
Temperature drift of sensitivity error	TCG	mV/k		±1.5		@-10℃~70℃
Zero voltage	V ₀E	mV	-50	±20	50	
Temperature drift of zero voltage@/p = 0	<i>TCV</i> 0E	mV/k		±1.5		@-10℃~70℃
Linearity error 0/PN	$\mathcal{E}_{\!\scriptscriptstyle \perp}$	%	-1	±0.5	1	
Accuracy@ /PN	Х	%	-1	±0.5	1	
Response time@ 90% of /PN	t r	ms		500		
Frequency bandwidth	BW	kHz		DC		

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

♦ General tolerance

±0.3mm

♦ Connection of secondary

KF2EDG 3.81MM 4P

♦ Primary hole

Φ12mm

Remarks

 \diamond When IP flows in the direction of the arrow, V_{OUT} increase.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.